# Get dataset
e1 = vascr_import("ECIS", "ECIS/ECIS_200722_MFT_1.abp", "ECIS/ECIS_200722_MFT_1_RbA.csv", "Exp1")
e1s = vascr_apply_map(e1, "ECIS/200722_key.csv")
e2 = ecis_import("ECIS/ECIS_200728_MFT_1.abp", "ECIS/ECIS_200728_MFT_1_RbA.csv", "Exp2")
e2s = vascr_apply_map(e2, "ECIS/200728_key.csv")
e3 = ecis_import("ECIS/ECIS_200907_MFT_1.abp", "ECIS/ECIS_200907_MFT_1_RbA.csv", "Exp3")
e3s = vascr_apply_map(e3, "ECIS/200907_key.csv")
combined = vascr_combine(e1s, e2s, e3s)
combined = combined %>% mutate(SampleID = as.numeric(Sample))
c1 = combined %>% vascr_subset(unit ="R", frequency = 4000)
grid_data = c1 %>% vascr_subset(experiment = 1) %>% vascr_resample_time(npoints = 300) %>%
vascr_edit_name("Water Vehicle \\+ ") %>%
vascr_replace_sample("Water Vehicle + 0 HCMVEC", "Cell-free Control") %>%
vascr_replace_sample("NA", "Cell free") %>%
vascr_replace_sample("0 HCMVEC", "Cell free") %>%
vascr_edit_name("IL1b", "IL1β") %>%
vascr_edit_name("TNFa", "TNFα") %>%
vascr_edit_name("pg.ml", "pg/ml") %>%
vascr_edit_name("\\.", " ") %>%
vascr_edit_name("0000", "0,000") %>%
vascr_edit_name("HCMVEC", "hCMEVEC") %>%
mutate(Sample = factor(Sample, unique(Sample)))
vascr_plot_line(grid_data)
g1 = vascr_plot_grid(grid_data, threshold = 0.1)
g1
ggsave("devel/grid.svg", g1, width = 21.0, height = 29.7, units = "cm")
# e1s %>% vascr_subset(unit = "R", frequency = 4000) %>% vascr_plot_line()
#
# # Plot grid
# vascr_plot_grid(c1 %>% vascr_subset(experiment = 2), threshold = 0.01)
# Resample_tim
e1c = c1 %>% filter(Well %in% c("E01", "E02")) %>%
filter(Experiment == "1 : Exp1")
e1c_short = e1c %>%
filter(Time <2)
p1a = ggplot(e1c_short) +
geom_point(aes(x = Time, y = Value, color = Well)) +
geom_vline(aes(xintercept = Time, color = Well), alpha = 0.3) +
labs(tag = "A")
p1a
p1b = e1c_short %>% vascr_resample_time() %>% ggplot() +
geom_point(aes(x = Time, y = Value, color = Well)) +
geom_vline(aes(xintercept = Time, color = Well), alpha = 0.3)+
labs(tag = "B")
p1b
p1c = e1c %>% vascr_resample_time() %>% ggplot() +
geom_point(aes(x = Time, y = Value, color = Well)) +
geom_vline(aes(xintercept = Time, color = Well), alpha = 0.3)+
labs(tag = "C")
p1c
e1c2 = e1c #%>% vascr_subset(time = c(45,55))
vascr_plot_resample_range(data.df = e1c2)
p1d = e1c2 %>% vascr_plot_resample(unit = "R", frequency = 4000, newn = vascr_find_count_timepoints(e1c2), rug = FALSE) +
labs(tag = "C", colour = "Processing") +
scale_colour_manual(values = c("orange", "mediumvioletred"))
p1d
p1e = e1c2 %>% vascr_plot_resample(unit = "R", frequency = 4000, newn = 151, rug = FALSE) +
labs(tag = "C", colour = "Processing") +
scale_colour_manual(values = c("orange", "mediumvioletred"))
map = "
ba
ca
da
cd"
layout = p1a / p1b / p1d /p1e + plot_layout(guides = "collect")
layout
ggsave("devel/resamplefig.svg", layout)
vascr_find_disc(e1c2)
average_data = c1 %>% vascr_resample_time(npoints = 300) %>%
vascr_edit_name("Water Vehicle \\+ ") %>%
vascr_replace_sample("Water Vehicle + 0 HCMVEC", "Cell-free Control") %>%
vascr_replace_sample("0 HCMVEC", "Cell free") %>%
vascr_edit_name("IL1b", "IL1β") %>%
vascr_edit_name("TNFa", "TNFα") %>%
vascr_edit_name("pg.ml", "pg/ml") %>%
vascr_edit_name("\\.", " ") %>%
vascr_edit_name("0000", "0,000") %>%
vascr_edit_name("HCMVEC", "hCMEVEC") %>%
mutate(Sample = factor(Sample, unique(Sample))) %>%
filter(Sample != "NA") %>%
vascr_exclude("H02", "2: Exp 2")
pwell = average_data %>% vascr_plot_line(facet = FALSE, text_labels = FALSE) + labs(tag = "A")
pwell
pexp = average_data %>% vascr_summarise("experiments") %>% vascr_plot_line() + labs(tag = "B")
pexp
psum = average_data %>% vascr_summarise("summary") %>% vascr_plot_line() + labs(tag = "C")
psum
((pwell + guides(colour = "none") ) + pexp + psum + guide_area()) + plot_layout(guides = "collect")
unique(c1$Sample)
c2 = c1 %>% vascr_subset(sample = c("500 pg.ml.TNFa + Water Vehicle + 80000 HCMVEC", "Water Vehicle + 80000 HCMVEC"),
time = c(40,100)) %>%
mutate(SampleID = as.numeric(Sample)) %>%
vascr_resample_time(npoints = 400)
norm1 = c2 %>% ungroup() %>%
vascr_subset(unit = "R", frequency = 4000) %>%
ungroup() %>%
vascr_summarise(level = "experiments") %>%
vascr_plot_line(facet = FALSE)
norm2 = c2 %>% ungroup() %>%
vascr_subset(unit = "R", frequency = 4000) %>%
vascr_resample_time(npoints = 500) %>%
ungroup() %>%
vascr_summarise(level = "summary") %>%
vascr_plot_line(facet = FALSE)
c2n = c2 %>% vascr_normalise(normtime = 47)
norm3 = c2n %>% ungroup() %>%
vascr_subset(unit = "R", frequency = 4000) %>%
vascr_resample_time(npoints = 500) %>%
ungroup() %>%
vascr_summarise(level = "experiments") %>%
vascr_plot_line(facet = FALSE)
norm4 = c2n %>% ungroup() %>%
vascr_subset(unit = "R", frequency = 4000) %>%
vascr_resample_time(npoints = 500) %>%
ungroup() %>%
vascr_summarise(level = "summary") %>%
vascr_plot_line(facet = FALSE)
norm5 = c2 %>% vascr_normalise(normtime = 80) %>%
vascr_subset(unit = "R", frequency = 4000) %>%
vascr_resample_time(npoints = 500) %>%
ungroup() %>%
vascr_summarise(level = "summary") %>%
vascr_plot_line(facet = FALSE)
norm1 + norm2 + norm3 + norm4 + norm5 + guide_area() + plot_layout(guides = "collect", ncol = 2)
cc.df = vascr_cc(c2) %>% vascr_summarise_cc("summary")
vascr_plot_cc(cc.df %>% mutate(Experiment = 1))
vascr_summarise_cc_stretch_shift_stats(c2, unit = "Rb", frequency = 0)
ct = vascr_plot_cc_stretch_shift_stats(c2, unit = "Rb", frequency = 0)
ct
data.df = c2 %>%
vascr_subset(unit = "R") %>%
vascr_resample_time(npoints = 50)
c2 = c1 %>% vascr_subset(sample = c("500 pg.ml.TNFa + Water Vehicle + 20000 HCMVEC", "500 pg.ml.IL1b + Water Vehicle + 20000 HCMVEC", "Water Vehicle + 20000 HCMVEC"),
time = c(40,100)) %>%
mutate(SampleID = as.numeric(Sample)) %>%
vascr_resample_time(npoints = 400)
data.df = c2 %>% vascr_normalise(47)
data.df %>% vascr_plot_line_dunnett(frequency = 4000, unit = "R", time = list(70, 60), reference = "0_cells")
times = c(0:100)/100*pi
synthetic.df = data.frame(`Time` = times,
`A) Reference` = sin(times),
`B) Reduced magnitude` = sin(times)/2,
`C) Inverse` = 1-sin(times)-1,
`D) Inverse2` = 1-sin(times*1.8)-1)
library(ggplot2)
library(gridExtra)
library(dplyr)
library(formattable)
library(signal)
# Omitted full code, same as in question
# full.data <- structure(...)
# summary.table <- structure(...)
# table <- tableGrob(...)
#table object to beincluded with ggplot
table <- tableGrob(summary.table %>%
rename(
`Prb FR` = prob.fr,
`Prb ED` = prob.ed.n,
),
rows = NULL)
# Simplified plot
plot <- ggplot(full.data, aes(x = error, y = prob.ed.n, group = N, colour = as.factor(N))) +
geom_line(data = full.data %>%
group_by(N) %>%
do({
tibble(error = seq(min(.$error), max(.$error),length.out=100),
prob.ed.n = pchip(.$error, .$prob.ed.n, error))
}),
size = 1) +
guides(color = guide_legend(reverse=TRUE)) +
theme(legend.key = element_rect(fill = "white", colour = "black"))
plot
library(grid)
library(gtable)
#' @param tableGrob The output of the `gridExtra::tableGrob()` function.
#' @param plot A ggplot2 object with a single, vertical legend
#' @param replace_col An `integer(1)` with the column number in the
#' table to replace with keys. Defaults to the last one.
#' @param key_padding The amount of extra space to surround keys with,
#' as a `grid::unit()` object.
#'
#' @return A modified version of the `tableGrob` argument
add_legend_column <- function(
table,
plot,
replace_col = ncol(tableGrob),
key_padding = unit(5.5, "pt")
) {
# Getting legend keys
keys <- cowplot::get_legend(plot)
keys <- keys$grobs[[which(keys$layout$name == "guides")[1]]]
keys <- gtable_filter(keys, 'label|key')
idx <- unique(keys$layout$t)
keys <- lapply(idx, function(i) {
x <- keys[i, ]
# Set justification of keys
x$vp$x <- unit(0.5, "npc")
x$vp$justification <- x$vp$valid.just <- c(0.5, 1)
# Set key padding
x <- gtable_add_padding(x, key_padding)
x
})
# Measure keys
width <- max(do.call(unit.c, lapply(keys, grobWidth)))
width <- max(width, table$widths[replace_col])
height <- do.call(unit.c, lapply(keys, grobHeight))
# Delete foreground content of the column to replace
drop <- table$layout$l == replace_col & table$layout$t != 1
drop <- drop & endsWith(table$layout$name, "-fg")
table$grobs <- table$grobs[!drop]
table$layout <- table$layout[!drop, ]
# Add keys to table
table <- gtable_add_grob(
table, keys, name = "key",
t = seq_along(keys) + 1,
l = replace_col
)
# Set dimensions
table$widths[replace_col] <- width
table$heights[-1] <- unit.pmax(table$heights[-1], height)
return(table)
}
base = synthetic.df %>%
pivot_longer(-Time) %>%
mutate(name = str_replace(name, "\\.\\.", ") ")) %>%
ggplot() +
geom_line(aes(x = Time, y = value, colour = name)) +
scale_color_manual(labels = list("<span style = 'color:#0072B2; width:500px;'>A) Reference cc</span> T2", "2", "3", "4"), values = c(1:4)) +
labs(colour = "Line Cross Correlation") +
theme(legend.text = element_markdown())
ccf(synthetic.df$A..Reference, synthetic.df$D..Inverse2, plot = FALSE)
titles = data.frame("Sample"= c(0,0,0,0),
`Cross_Correlation` = c("Reference","1","-1", "-0.277"))
table <- tableGrob(titles,
cols = c("Sample", "Cross Correlation"),
rows = NULL)
madetable = add_legend_column(table, base, 1)
row1 = ((base + theme(legend.position = "none")) + madetable)
pl2 =vascr_plot_line(c2 %>% vascr_summarise("summary"))
row2 = (pl2 + cowplot::get_legend(pl2))
c1 = combined %>% vascr_subset(unit ="Rb", frequency = 0)
unique(c1$Sample)
c2 = c1 %>% vascr_subset(sample = c("500 pg.ml.TNFa + Water Vehicle + 80000 HCMVEC",
"500 pg.ml.IL1b + Water Vehicle + 80000 HCMVEC",
"Water Vehicle + 80000 HCMVEC"),
time = c(47,47+24)) %>%
mutate(SampleID = as.numeric(Sample)) %>%
vascr_resample_time(npoints = 50)
c2 = c2 # %>% vascr_subset(experiment = c(1,2)) %>% ungroup()
vascr_plot_cc_stats(c2, unit = "Rb", frequency = 0, points = TRUE)
vascr_plot_line(c2 %>% vascr_summarise("experiments"))
vascr_plot_line(c2)
vascr_summarise_cc_stretch_shift_stats(c2, unit = "Rb", frequency = 0)
vascr_plot_cc_stretch_shift_stats(c2, unit = "Rb", frequency = 0)
cc_df = vascr_cc(c2, cc_only = FALSE)
cc_exp = cc_df %>% vascr_summarise_cc("experiments") %>% mutate(Experiment.x = Experiment, Experiment.y = Experiment)
xcor = vascr_plot_cc_stats(cc_exp, points = TRUE)
cc_exp2 = cc_df %>%
mutate(cc = stretch_shift_cc) %>%
vascr_summarise_cc("experiments") %>%
mutate(Experiment.x = Experiment, Experiment.y = Experiment)
xcor2 = vascr_plot_cc_stats(cc_exp2, points = TRUE)
base + theme(legend.position = "none") + madetable +
pl2 + theme(legend.position = "none") + cowplot::get_legend(pl2) +
xcor + theme(legend.position = "none") + cowplot::get_legend(xcor) +
plot_layout(ncol = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.